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Abstract-We obtain closed form solutions to the problems of cylindrical and spherical cavitation
when a stretch is prescribed on the outer boundary for a compressible elastic material. The strain
energy function is quite general and contains an arbitrary function of a linear combination of the
principal stretch invariants. The cavitating solution is shown to be preferred to the corresponding
homogeneous deformation. Three modes of cavitation are identified for the spherical problem
whereas only one is possible in the cylindrical case. The most general strain energy function for
which the cavitating solution is pO:isible is briefly discussed. 1997 Elsevier Science Ltd.

1. INTRODUCTION

In applications, it has been commonly recognised that highly elastic materials such as
elastomers create cavities as precursors to failure, For instance, Gent and Lindley (1958)
reported that many spherical cavities appeared in short rubber cylinders when subjected to
tensile loading. Their specimens were such that the deformation of the rubber in the lateral
direction was highly constrained and great triaxial stress could be easily achieved in the
interior. They proceeded to propose a criterion that a cavity would form when the local
triaxial stress reaches a certain value which is characteristic of the material. Gent and
Tompkins (1969) observed that similar cavities were created in over-gas-saturated rubbers
when the external pressure was removed, thus reconfirming the criterion put forward by
Gent and Lindley (1958), Oberth and Bruenner (1965) also observed that in an elastomeric
material, cavities were formed near stiffer inclusions by the high triaxial stress. More
recently, cavitation in rubber particles dispersed in polymeric matrices is drawing increasing
attention because of its connection with failure mechanisms and also toughening effects
(e.g., Beahan et ai., 1976; Lazzeri and Bucknall, 1993 and Bucknall et ai. 1994),

In most of the situations cited above, highly elastic materials are subjected to sub
stantially constrained loading, resulting in large triaxial stress. In these circumstances the
phenomenon of cavitation may be understood in the sense that the strain energy stored by
volumetric expansion would be, when a critical level is exceeded, converted into distortional
energy accompanying high equi-biaxial deformations around an initiated cavity. Thi~

interpretation may also be appropriate to the analysis of the bifurcation of deformations
at a critical level of loading, which problem has been of major interest in the mechanics or
solids.

The notion of bifurcation was emphasised by Ball (1982) who formulated the problem
of modelling cavity formation in the context of nonlinear elasticity. Ball (1982) analysed
deformations ofa solid sphere ofhomogeneous and isotropic hyperelastic material subjected
to uniform radial tension at the outer surface. The sphere remains intact if the tension is
small enough. For certain popular material models, however, there also exists a competing
solution which contains a spherical cavity at the centre when the tension exceeds a certain
limit: a cavitating bifurcation occurs. In his major contribution, Ball (1982) gives an explicit
formula for the critical stress in the case of incompressible hyperelastic solids, where the
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assumed constraint of incompressibility facilitates the analysis to a great extent. In the
special case of neo-Hookean solids, the critical stress found was in agreement with the
experimental criterion obtained by Gent and Lindley (1958).

However, it is a formidable task to analyse the corresponding problems for com
pressible solids in a generalised manner. Following Ball's example, mathematical issues
relating to existence, uniqueness and stability of cavitating solutions were studied by
Stuart (1985), Sivaloganathan (1986a, b) and Podio-Guidugli et al. (1986). Regarding the
connection between cavitation phenomena and material constitutive behaviour, there have
been numerous attempts to consider cavitation for specific hyperelastic material models.
The critical values for cavitation in the plane-strain axisymmetric as well as spherically
symmetric deformations of the so-called Blatz-Ko material (Blatz and Ko, 1962) were
obtained by Horgan and Abeyaratne (1986). Further analysis was undertaken by Ertan
(1988), Biwa et al. (1994) and Biwa (1995) incorporating hyperelastic potentials which
generalise the Blatz-Ko model. Horgan (1992) analysed cavitation for the so-called gen
eralised Varga materials where closed-form solutions for the cavity radius were obtained
for both spherical and cylindrical deformations. This work illustrates the phenomenon of
cavitation for compressible materials in a particularly tractable setting.

The major part of this papt:r generalises the work of Horgan (1992) using a hyperelastic
potential which includes the generalised Varga materials as a special case. What is note
worthy in our approach is that the simplicity and elegance of the work of Horgan is
maintained but in a more general setting. Furthermore we identify three possible modes of
cavitation: the first is where the cavity radius increases monotonically with applied stretch
(as is the case for the generalised Varga material), the second mode is where the cavity
radius does not increase monotonically and the third is where with increasing applied
stretch at the outer surface, a cavity first appears, then closes and finally reopens again.
The latter two modes have not been previously identified in the literature.

Most previous work on the problem of cavitation is characterised by the following
approach: assume some specified hyperelastic model, presumed to be valid for arbitrary
strain range, use the equations of equilibrium to obtain the corresponding radial defor
mation field and then solve the boundary value problem associated with cavitation. This
is, initially, our approach also but we also obtain the most general strain energy function
for which our cavitation solution is possible, using recent results of Murphy (1997) which
partly provided the motivation for the present analysis. As a consequence of this, we will
show that the hyperelastic potential of the generalised Varga material is the most general
for which the solution of Horgan (1992) is valid. Therefore, we believe this paper also
contributes to the discussion as to the type of hyperelastic material which allows the
phenomenon of cavitation to occur.

We finally remark that an excellent review of the problem of cavitation in nonlinear
elasticity was provided recently by Horgan and Polignone (1995), where a more extensive
list of references is given.

2. PRELIMINARIES

The response of an elastic material is described completely by the form of its strain
energy function

w= W(F)

where F is the deformation gradient tensor satisfying

detF > O.

We note that F has the polar decompositions

(1)

(2)
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F = RU = VR,
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(3)

where the rotation tensor R is a proper orthogonal tensor and the stretch tensors U and V
are positive-definite and symmetric.

Invariance under superposed rigid-body motions leads to

W= W(U).

The assumption of material isotropy further leads to

where ij, i2 and i3 are the principal invariants of the stretch tensors.
The stress response equations

oW
P T = 1'3-1PFT,. =aF'

(4)

(5)

(6)

where P, T are the Piola and Cauchy stress tensors respectively, then lead to a representation

(7)

Imposing the conditions that the strain energy and the stress vanish in the reference
configuration, we obtain

(8)

3. THE CHOICE OF STRAIN ENERGY FUNCTION

Assume initially that the strain energy function has the form

(9)

where Q(.) is an arbitrary function and Ct., /3, y, Cj, C2, C3 are arbitrary constants. We first
note that (9) is a generalisation of the three materials considered by Carroll (1988) : setting
/3 = y = 0 recovers the harmonic material, setting Ct. = Y = 0 recovers the material of type
II and setting Ct. = /3 = 0 recovers the generalised Varga material. In view of the work of
Carroll we will call the material with the above strain energy function, the generalised
Carroll (or GC) material. The generalised Varga material is the material studied by Horgan
(1992) in the context of cavitation in unconstrained elasticity and our work will be a
generalisation of the results obtained by him.

The problem of finding restrictions on the strain energy function such as to ensure
physically realistic behaviour is an open one in finite elasticity. Two obvious necessary
restrictions are the reference configuration restrictions given in (8). Imposing these on (9)
we obtain

(10)

where
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no == n(31X+3jJ+y), (11 )

We also note that since the finite theory includes the linear as a limiting case, another
condition that must be satisfied by any strain energy function is that on restriction to
infinitesimal deformations, the shear and bulk moduli should be positive. Expanding (9) in
a Taylor series about the reference configuration and neglecting higher order terms gives

W = E ABE 4B ( -Q~(~a+~jJ+Y)-~Cl -~C2 -C3)

+ EAAEBB(~n~ (jJ + 'r') +Q~(IX + 2jJ +,)2 +~ C2 +~ C3) (12)

where we have employed the summation convention, E is the usual infinitesimal strain
tensor and

(13)

Comparing (12) with the linear form of the strain energy function and imposing the
standard linear theory restrictions we obtain

(14)

We note that setting CI = C2 = C3 = 0 is not consistent with the above set of restrictions and
therefore we conclude that at least one of Ch C2, C3 must be non-zero.

In the context of large deformations, a number of constitutive inequalities have been
proposed as being necessary to ensure physically realistic behaviour. One set of inequalities
is the strong tension-extension (or STE) inequalities. As noted in Truesdell and Noll (1965),
the physical motivation for these is that when a cube of isotropic material is lengthened
along one principal direction while its faces parallel to that direction are kept fixed, the
tensile force must be increased, but to shorten it, the tensile force must be reduced. An
elastic material satisfies the STE inequalities if, and only if,

at-;:,-f > 0, i = 1,2,3, (no sum),
OAI

(15)

everywhere, where t i, Ai are the principal Cauchy stresses and principal stretches respectively.
For the GC material, the STE inequalities reduce to:

(16)

i.e., the function Q(x) must be convex. In what follows we will assume that (16) holds.

4. RADIAL SPHERICAL DEFORMATIONS

Deformations having spherical coordinate representation

r = feR), () = e, ¢ = cD, (17)

with dr/dR == r' > 0, describe radial expansion or compaction of hollow spheres. The
deformation gradient tensor and the stretch tensor have physical components
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and the principal invariants are given by
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(18)

• I r
I = r +2--

1 R'
r2 r

i =-+2-r'
2 R2 R' (19)

For the GC material, the stress response eqn (7) takes the form

Substitution from eqns (18) and (19) in the stress response eqn (20) gives the principal
stresses as

(21)

and

The equations of equilibrium reduce to

dTrr 2
-d +-(T,,-Too ) =0.

r r

Substituting (21), (22) into this equation yields

Since, by the STE inequalities, n is convex and by setting

(23)

(24)

(25)

we will not be able to satisfy natural boundary conditions, we see that (24) is equivalent to

(26)

where 51 is an arbitrary constant. Substitution of (19) into (26) yields a first order ordinary
differential equation in r which may be integrated to yield

(27)

where 52 is another constant of integration. (27) may now be solved by radicals to obtain
the explicit form of the radial deformation field. However, for our present purposes, (27)
is more convenient to use.
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5. RADIAL DEFORMATIONS OF A SOLID SPHERE

Attention is now focused on radial deformations of a solid sphere with initial radius
Ro which is subjected to a prescribed deformation of amount A on its outer surface:

(28)

Thus, setting R = Ro in the deformation field (27) implies

(29)

giving the relationship between the two parameters s, and S2'

Another condition is necessary to completely determine the field (27). A natural and
obvious condition to impose is that the sphere remains intact. This yields S2 = 0 in (27) and

reO) = o.

The resulting solution is the homogeneous expansion of the sphere

r(R) = AR.

(30)

(31)

An alternative mode of radial deformation was proposed by Ball (1982). Instead of pure
volumetric expansion (31) keeping the sphere intact, a spherical hole may appear at the
centre of the sphere. In mathematical terms this is expressed as

reO) == rc > 0, (32)

where rc is identified as the radius of the initiated cavity. Evaluation of (27) at R = 0 now
yields

and in what follows we will assume that

y # O.

(33)

(34)

Although (33) provides an interpretation for S2, we must impose a further condition
in order for it to be determined. A natural boundary condition for a cavitating solution is
that the cavity be traction-free

(35)

Using (21), (35) is seen to reduce for the GC material to

(36)

When it is assumed that a solution to (36) for Sl exists, it is unique due to the convexity of
Q(x). Once Sl is determined from (36), (29) determines S2 for a prescribed A.

Furthermore, combining (29) and (33), we can obtain the following relation between
the cavity radius rc and the applied stretch A:
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where Sj is the solution to (36) and
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(37)

f3
82 ==-.

y
(38)

We will call those values for A for which rc = 0, critical values. Cavitation occurs for those
values of A for which rc > O. If for some values of A, rc < 0, then, of course, cavitation is
not possible.

We first note that the results of Horgan (1992) are recovered in the above analysis on
setting IX = f3 = C3 = 0, }' = I and that the elegance and compactness of his results are
maintained in our generalisation. However, we see that the qualitative features of the
physical parameter of interest in cavitation, rn can differ significantly from those observed
by Horgan who found that beyond a critical value of stretch, the void radius increases
monotonically with applied stretch.

We now wish to emphasise that (37) is a closed form solution to the problem of
determining the relationship between the void radius and the stretch applied at the outer
curved surface of the sphere for the general compressible material with the strain energy
function given by (9). However we see that the qualitative features of this relationship
depend on the specific forms of the arbitrary function and the arbitrary constants defining
the strain energy function. This relationship will be considered in Section 7.

6. REMARKS ON ENERGY FUNCTIONALS

In order to determine which of the homogeneous or the cavitating modes of defor
mation is preferred for the GC material, associated energy functionals are examined. Since
the displacement on the outer surface is prescribed and the cavity surface (if it exists) is
traction-free, the associated potential energy, E, is given by

Using the equation of equilibrium for radial deformations, (39) can be rearranged as

4nR~{ , OW}
E=~3- W-(r(Ro)-A)a;'l '

(39)

(40)

where both Wand OW/OA I are evaluated at R = Roo This is the same form of the energy
functional used by Horgan (1992).

Since for homogeneous solution r(R) = AR, it is seen that the potential energy for the
homogeneous mode, EH , is given by

(41)

A straightforward manipulation involving (40) and (26) yields the corresponding functional
for the cavitating solution, En as

where (36) was used to evaluate Q'(sd·
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Thus the difference between the two types of solution, normalised by the reference
volume of the sphere, becomes

(43)

where an auxiliary parameter was introduced defined by

(44)

Thus a cavitating solution implies ( > 5,. It can be readily observed that the difference in
(43) vanishes as ( ---> 5" i.e.,

We proceed to take the derivative of the above difference with respect to ( as follows

d _ dO v C3

d
yE(() = - -dv (<;)--.
( <; y

Noting (36), the above derivative is also seen to vanish as ( ---> 51 :

(45)

(46)

(47)

Therefore, as it has been assumed that the function O(x) is convex, it is clear that the energy
difference is negative for ( > 5] while it is positive for ( < 5]. Thus in terms of potential
energy, the cavitating mode is preferred to the homogeneous deformation when the cav
itating solution exists with a cavity of positive radius.

7. SOME QUALITATIVE FEATURES

In Section 5 the relation between the applied stretch A and the radius of an initiated
cavity, r" is given in (37) for the GC material. Using this, we can trace the growth behaviour
of the cavity as the stretch is increased. In order to investigate the influence of the employed
material parameters on this behaviour, it is convenient to rewrite (37) as

(48)

As pointed out, e.g., by Horgan and Abeyaratne (1986), cavitation is an inherently nonlinear
phenomenon and cannot be modelled using linearised solid mechanics theories. Since linear
elasticity corresponds in (48) to the limiting case where A ---> 1, we will assume that a
(unique) solution to (36) exists such that

51 5]
f(1) - - = 3£1 + 3£2 + 1- - < 0

y y
(49)

is satisfied. This yields that rc < 0 when A = 1. Also it is immediate from (48) that as the
stretch A is increased without bound, rc ~ ARo • For the intermediate range of stretch, the
behaviour of the cavity radius depends on our choice of material parameters £1 and G2 in
(48). Below, some qualitative features of this behaviour will be discussed.

To this end, first it is noted thatf(A) in (48) has at most two extrema which satisfy



Nonmonotonic cavity growth

A
Fig. 1. The relation between the applied stretch and the cavity radius (mode I).
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(50)

Different types of behaviour can thus be classified based on the discriminant of the above
quadratic equation. Each case will be considered separately.

(i) G~ < GI

In this case (50) does not possess real roots and the cavity radius therefore grows
monotonically as the stretch increases (Fig. I). This monotonic dependence of rc upon A
will be termed mode I in what follows. We note that mode I behaviour was observed for
the Varga material by Horgan (1992) and for a special Blatz-Ko material by Horgan and
Abeyaratne (1986). For incompressible materials, mode I is the only mode possible due to
the internal constraint. It appears to be the only mode of cavitation observed so far in the
literature.

(ii) d = Gj

In this case (50) is satisfied by only one value of A, i.e., A = -G2' Consequently, for
this case, mode I is also the qualitative behaviour of the cavity radius.

(iii) d > GI

In this case further analysis is required in order to predict the behaviour of the cavity
radius. We first note that (50) has two solutions

A2 = -G2 +JG~ -Gj. (51 )

Al yields a maximum value, A 2 a minimum and A j < A 2.

It is easy to show that mode I behaviour is again observed when Al ~ 1 and therefore
a different mode of cavitation can occur only when A j > 1. This condition is equivalent to

(52)

This region in the Gj 82 plane is shown in Fig. 2.
We will now confine our attention to the shaded region in Fig. 2. There are three cases:

1. sdy > f(Aj).
From (48), we see that rclA~AI < O. Noting the asymptotic behaviour of r" we conclude

that in this case mode I is again observed.
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Fig. 3. The relation between the applied stretch and the cavity radius (mode II).

2. j(A2) < sJy <j(A])
For this case, rclA~Al > 0 and rc1A~A2 < O. In this case therefore as the stretch is

increased from I, rc increases hom a negative value to reach a positive maximum at A = AI,

then decreases to a negative minimum at A = A2 and finally increases unboundedly. A
physical interpretation of this is that as the stretch increases, a cavity first appears, then
collapses and finally reappears again. This type of cavitation we will call mode II and a
typical plot of cavity radius vs stretch for mode II is given in Fig. 3.

3. s]ly <j(A2)

For this case, rclA~AI > 0 and rc1A~A2 > O. In this case therefore as the stretch is
increased from I, rc increases from a negative value to reach a positive maximum at A = Aj,
then decreases to a positive minimum at A = A2 and finally increases unboundedly. A
physical interpretation of this is that as the stretch increases, a cavity first appears, then
after a period of strain softening behaviour, the cavity grows unboundedly. This type of
cavitation we will call mode III and a typical plot of cavity radius vs stretch for mode II is
given in Fig. 4.

Mode I cavitation, implying monotonic growth of the cavity with increasing applied
stretch, has been frequently demonstrated in previous work, e.g., Horgan (1992), Horgan
and Abeyaratne (1986), Ertan (1988) and Biwa et at. (1994), to name but a few. The O1:her
two modes, II and III, appear new and, we believe, warrant due attention. For the GC
material under study, the mode of cavitation is determined by the choice of material
parameters <;] and <;2' We wish to emphasise that the cavitating mode is always preferred to
the homogeneous deformation once a cavity appears regardless of mode of cavitation,
using the potential energy criterion.

The most general class of strain energy functions for which (27) describes the cor
responding radial deformation field was obtained by Murphy (1997). This general class
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A
Fig. 4. The relation between the applied stretch and the cavity radius (mode III).
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includes the strain energy function assumed at the outset, but most generally it is described
completely by the following form:

(53)

where

(54)

and '¥(y) is another arbitrary function. In particular, it is easy to show that the strain
energy function with if. = f3 = 0 is the most general strain energy function for which the
cavitation solution of Horgan (1992) is valid. We note that all of the above analysis can be
extended to this most general class of materials (53) although some of the conciseness of
the above results would be lost without any greater insight into the problem at hand.

Finally we remark that cavitation for the GC material can be interpreted as the growth
of a negligibly small pre-existing micro-void but we will not undertake such analysis here.

8. RADIAL CYLINDRICAL DEFORMAnONS

Deformations having cylindl;cal coordinate representation

r == f(R), e= e, z = AZ, (55)

where dr/dR == r' > 0 and A. > 0, describe radial deformations of cylindrical bodies
accompanied by an axial stretch. The deformation gradient tensor and the stretch tensor
have physical components

F = V = diag (r"~'A.)

and the principal invariants are

(56)

. ,r ,
11 = r + R+Ic, (57)

We will confine our attention in what follows to the GC material. A similar analysis can be
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undertaken for the more general material (53) but will not be done here. Substitution from
eqns (56) and (57) into the stress response eqn (20) for the GC material yields

and

Tzz = (y+Ct:-~+{3(~+~))n'+C3+CI R,+C2(~+~).rr r r rr r r

(58)

(59)

(60)

The axial and azimuthal equations of equilibrium are satisfied identically and the radial
equation

reduces to the form

I( R (1 R)) d--; y+Ct:-.,-+{3 -;-+- n"dR(Ct:i1 +{3i2+yi3 ) =0.
r MAr

Arguing here as in Section 4 shows that (62) is equivalent to

(61)

(62)

(63)

where SI is a constant of integration. Substituting from (57) into (63) yields a first order
equation in r which is easily integrated to obtain

(64)

where S2 is a constant of integration. This form of the radial deformation field is especially
convenient for the purposes of our study. Eqn (64) can, of course, be easily solved to obtain
the radial deformation field explicitly.

9. DEFORMATIONS OF SOLID CYLINDERS

Consider a solid cylinder of undeformed radius Ro subjected to an axial stretch of
amount Ie and also subjected to a radial stretch of amount fJ. at the curved surface. Thus we
will require that

where fJ. > 1.
As in the spherical case, requiring that the cylinder remains solid yields

r = fJ.R,

the homogeneous deformation field.
Suppose now that a void appears at the centre of the cylinder. Thus

(65)

(66)
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reO) == r, > 0,

and imposing the condition that the cavity be stress free yields

Applying (64) at the outer boundary and using (65) gives

Applying (64) at R = 0, we obtain

Assuming that f3+y}. #- 0, we obtain from (69), (70)

where

IX +13).
m, = f3+yA'

3871

(67)

(68)

(69)

(70)

(71)

(72)

In the above, SI is determined from the stress-free boundary condition (68). This reduces
to the equation

C2 +AC3
13 +y)..

(73)

We again note that the results of Horgan (1992) can be recovered in this case. Setting
IX = 13 = 0, y = }. = 1 and C2 = C3= °in the above analysis gives the same results.

We now focus on the qualitative behaviour of reo Consideration of the asymtotics in
(71) and the behaviour of r, as J.1---'> 1, shows that for cylindrical cavitation only one mode
is possible for the GC family of materials: that after a critical value of the stretch, the
cavity radius increases monotonically with applied radial stretch. Thus mode I behaviour
is the only possible means of cavitation for cylinders composed of the GC material. This
mode of cylindrical cavitation has previously been observed for the Varga material by
Horgan (1992) and for a special Blatz-Ko material by Horgan and Abeyaratne (1986).

Proceeding as for the spherical case, it is easy to show that cavitation (where possible)
is preferred over the homogeneous deformation for the GC material.
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